Objective: Based on the Bayesian network, this study investigates the impact pathways of multidimensional factors related to the living environment—specifically housing factors, exposure to daily ...
Learn how Network in Network (NiN) architectures work and how to implement them using PyTorch. This tutorial covers the concept, benefits, and step-by-step coding examples to help you build better ...
ABSTRACT: This paper investigates the application of machine learning techniques to optimize complex spray-drying operations in manufacturing environments. Using a mixed-methods approach that combines ...
Abstract: Bayesian networks are widely used for causal discovery and probabilistic modeling across diverse domains including healthcare, multi-dimensional data analysis, environmental modeling, and ...
Gut bacteria are known to be a key factor in many health-related concerns. However, the number and variety of them is vast, as are the ways in which they interact with the body's chemistry and each ...
Single-cell transcriptomic architecture for deciphering the complexity of tumor microenvironment in ampulla of Vater carcinoma. Advancing treatment outcomes for peritoneal surface malignancies in low- ...
Abstract: Bayesian inference provides a methodology for parameter estimation and uncertainty quantification in machine learning and deep learning methods. Variational inference and Markov Chain ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results